The Box-Cox power transformation on nursing sensitive indicators: Does it matter if structural effects are omitted during the estimation of the transformation parameter?
نویسندگان
چکیده
BACKGROUND Many nursing and health related research studies have continuous outcome measures that are inherently non-normal in distribution. The Box-Cox transformation provides a powerful tool for developing a parsimonious model for data representation and interpretation when the distribution of the dependent variable, or outcome measure, of interest deviates from the normal distribution. The objectives of this study was to contrast the effect of obtaining the Box-Cox power transformation parameter and subsequent analysis of variance with or without a priori knowledge of predictor variables under the classic linear or linear mixed model settings. METHODS Simulation data from a 3 × 4 factorial treatments design, along with the Patient Falls and Patient Injury Falls from the National Database of Nursing Quality Indicators (NDNQI® for the 3rd quarter of 2007 from a convenience sample of over one thousand US hospitals were analyzed. The effect of the nonlinear monotonic transformation was contrasted in two ways: a) estimating the transformation parameter along with factors with potential structural effects, and b) estimating the transformation parameter first and then conducting analysis of variance for the structural effect. RESULTS Linear model ANOVA with Monte Carlo simulation and mixed models with correlated error terms with NDNQI examples showed no substantial differences on statistical tests for structural effects if the factors with structural effects were omitted during the estimation of the transformation parameter. CONCLUSIONS The Box-Cox power transformation can still be an effective tool for validating statistical inferences with large observational, cross-sectional, and hierarchical or repeated measure studies under the linear or the mixed model settings without prior knowledge of all the factors with potential structural effects.
منابع مشابه
A Simple Transformation Method in Skewness Reduction
Statistical analysis of non-normal data is usually more complicated than that for normaldistribution. In this paper, a simple root/power transformation technique developed by Niaki, et al [1]is extended to transform right and left skewed distributions to nearly normal. The value of theroot/power is explored such that the skewness of the transformed data becomes almost zero with anacceptable err...
متن کاملSmall Area Estimation of the Mean of Household\'s Income in Selected Provinces of Iran with Hierarchical Bayes Approach
Extended Abstract. Small area estimation has received a lot of attention in recent years due to necessity demand for reliable small area statistics. Direct estimator may not provide adequate precision, because sample size in small areas is seldom large enough. Hence, by employing models that can use auxiliary information and area effects in descriptions, one can increase the precision of direct...
متن کاملناهمگنی اجزای واریانس پروتئین شیر در سطوح مختلف تولید گله- سال و تاثیر آن بر پارامترهای ژنتیکی و ارزش اصلاحی برآورد شده گاوهای هلشتاین ایران
This study was carried out to investigate different data transformation methods on homogeneity and heterogeneity of variance components. Data included 305-day lactation records for protein yield from the first three lactations of Iranian Holstein cows collected from 1983 to 2014 by the Animal Breeding Center and Promotion of Animal Products of Iran. Data included 141670 records for 1st lactatio...
متن کاملFPGA Can be Implemented Using Advanced Encryption Standard Algorithm
This paper mainly focused on implementation of AES encryption and decryption standard AES-128. All the transformations of both Encryption and Decryption are simulated using an iterativedesign approach in order to minimize the hardware consumption. This method can make it avery low-complex architecture, especially in saving the hardware resource in implementing theAES InverseSub Bytes module and...
متن کاملEco 2011/29 Department of Economics Does the Box-cox Transformation Help in Forecasting Macroeconomic Time Series?
The paper investigates whether transforming a time series leads to an improvement in forecasting accuracy. The class of transformations that is considered is the Box-Cox power transformation, which applies to series measured on a ratio scale. We propose a nonparametric approach for estimating the optimal transformation parameter based on the frequency domain estimation of the prediction error v...
متن کامل